
http://hpc.sagepub.com

Computing Applications 
International Journal of High Performance

DOI: 10.1177/1094342007077858 
 2007; 21; 166 International Journal of High Performance Computing Applications

Narayan Desai, Ewing Lusk and Rick Bradshaw 
 A Composition Environment for MPI Programs

http://hpc.sagepub.com/cgi/content/abstract/21/2/166
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 can be found at:International Journal of High Performance Computing Applications Additional services and information for 

 http://hpc.sagepub.com/cgi/alerts Email Alerts:

 http://hpc.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints: 

 http://www.sagepub.co.uk/journalsPermissions.navPermissions: 

 http://hpc.sagepub.com/cgi/content/refs/21/2/166 Citations

 at ARGONNE NATIONAL LAB LIB on May 20, 2010 http://hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/cgi/alerts
http://hpc.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.co.uk/journalsPermissions.nav
http://hpc.sagepub.com/cgi/content/refs/21/2/166
http://hpc.sagepub.com


166 COMPUTING APPLICATIONS

The International Journal of High Performance Computing Applications,
Volume 21, No. 2, Summer 2007, pp. 166–173
DOI: 10.1177/1094342007077858
© 2007 SAGE Publications

A COMPOSITION ENVIRONMENT 
FOR MPI PROGRAMS

Narayan Desai
Ewing Lusk
Rick Bradshaw
MATHEMATICS AND COMPUTER SCIENCE DIVISION, 
ARGONNE NATIONAL LABORATORY, ARGONNE, IL 60439 
(DESAI@MCS.ANL.GOV)

Abstract

While MPI is the most common mechanism for expressing
parallelism, MPI programs are not composable by using
current MPI process managers or parallel shells. We intro-
duce MPISH2, an MPI process manager analogous to
serial Unix shells. It allows the composition of MPI and
serial Unix utilities with one another to perform scalable
tasks across large numbers of Unix clients. This paper dis-
cusses in detail issues of process management and paral-
lel tool composition.

Key words: MPI, process management, parallel shell, com-
mand language

1 Introduction

The shell is the most familiar interface to Unix systems.
In general, it is the first contact that users have with Unix
systems. Its ubiquity makes it the dominant mechanism
through which command execution occurs.

Unix shells provide a rich environment for task auto-
mation, exposing command exit codes, providing control
flow constructs, and organizing disparate programs into
complex command pipelines. Users are familiar with the
decomposition of complex tasks into the invocation of
single-function utilities using these mechanisms.

While MPI is not as ubiquitous as Unix shells, it is the
dominant mechanism used to express parallelism in scal-
able applications. Many high-performance implementa-
tions of MPI exist; indeed, MPI is so pervasive that a
good MPI implementation is frequently cited as one of
the requirements for new large-scale computational sci-
ence machines.

Unfortunately, process management systems that can
start MPI programs have not provided or exposed suffi-
cient information for their composition with their serial
analogues or even with each other. To address this issue,
we have implemented MPISH2, an MPI process manager
that provides a user interface and composition capabili-
ties nearly identical to the Bourne shell.

This paper focuses on the issues involved in process
management and parallel tool use. We motivate the dis-
cussion with a series of use cases and examples. To set
the context, we begin by describing how our work on
MPISH2 fits into related efforts. Next, we discuss the
design and implementation of MPISH2. We then demon-
strate how program composition techniques can benefit
the larger community of users of parallel system software
and tools.

2 Related Work

Shells have long been a subject of interest in the Unix
research community. Starting with the original shell inclu-
ded with early Unix systems (Thompson 1975), shells have
been augmented into relatively full-featured program-
ming languages, including data types (Korn, Northrup,
and Korn 1996). Because of the familiarity of the shell
interface to Unix users, many attempts have been made to
present a shell-like interface for program execution on
parallel systems.

Existing shells provide users with a large range of
functionality. The Bourne shell (Bourne 1978) offers proc-
ess management features, job control, interactive program
execution, command pipelines, and control flow constructs.
Using these facilities, users can automate complex inter-
actions between executables in a robust and intuitive
fashion.

 at ARGONNE NATIONAL LAB LIB on May 20, 2010 http://hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com


167A COMPOSITION ENVIRONMENT

As parallel systems have become more common, several
attempts have been made to offer analogous capabilities
for parallel execution of serial and parallel programs.
Parallel shells provide an interface for the execution of
the same program across multiple systems. The key goal
of these tools is to enable scalable, uniform execution of
the same programs across large numbers of clients. Paral-
lel Distributed Shell, pdsh (http://www.llnl.gov/linux/
pdsh/pdsh.html), is a parallel shell that uses an rsh or
ssh client and a strided, parallel approach to run tasks in
parallel across many systems. The C3 tools (Flannery
et al. 2000) provide a similar execution mechanism that
also runs tasks through rsh.

These tools do an admirable job of starting processes
scalably; however, they do not expose any of the Unix
process information needed to compose commands effec-
tively. Discrete exit statuses are not returned for each
process executed. All control flow statements are exe-
cuted serially and independently. Command pipelines,
while usable in some cases, are still fundamentally serial
constructs. Most importantly, existing parallel shells do
not support MPI process startup.

MPI process management has also been the subject of
much work over the past several years. Historically, MPI
startup mechanisms have scaled poorly and performed
badly overall (Butler, Gropp, and Lusk 2000). Two systems
have addressed these issues over the past few years. MPD
(Butler et al. 2003) uses a group of daemons, arranged in
a ring topology, to scalably start MPICH2 MPI proc-
esses. Yod (Brightwell and Fisk 2001) provides similar
capabilities in the Cplant software stack.

Both of these mechanisms provide highly scalable
process startup and management services needed to exe-
cute MPI processes, but neither provides sufficient infor-
mation for use in shell-style programming. MPD provides
access to all exit statuses and to standard I/O multiplexed
into single streams. Yod provides similar access to stand-
ard I/O but fails to provide any access to return codes.
Most importantly, each of these systems provides the
access to the exec system call without adding a frame-
work around it for program composition. This exclusion
makes it impossible to compose several discrete tasks
into a command pipeline, or any more complex task con-
struct.

Our earlier attempt to solve this problem was MPISH. It
had all of the startup functions required to natively execute
MPICH2 programs; however, the specification of execu-
tion locations was insufficient for many complex tasks.

The Unix and parallel shell landscape includes all of
the facilities needed to build complex compositions of
parallel programs; however, no single tool includes all of
these facilities. The ideal tool would include the flexibil-
ity and power of a serial shell with the ability to scalably
execute and compose parallel programs.

The work we present here has been motivated largely
by the gains in system software scalability afforded by the
use of MPI in system tools (Desai et al. 2004, 2005; Ong,
Lusk, and Gropp 2001). This approach also has proved
positive in terms of overall performance gains. More sur-
prisingly, tools implemented by using MPI-based scala-
ble components have proved far easier to troubleshoot
and debug than their ad hoc analogues. The need to exe-
cute large numbers of small scalable tools brings execu-
tion issues clearly into focus. As additional parallel system
tools become available, the desirability of tool composi-
tion increases at least as fast.

3 Design

The design of MPISH2 followed from the idea that users
need not treat parallel programs differently from serial
ones. With such a uniform execution interface, parallel
(and hence scalable) reimplementations of serial utilities
could be automatically used by existing scripts. At the
same time, we wanted to take the best features from each
of the previously mentioned shells. The goal was a sys-
tem that provided the flexibility and power of the Unix
shell, with the scalable startup features of parallel shells
and the ability to run MPI processes directly.

We chose the Bourne shell (Bourne 1978) as the lan-
guage basis for MPISH2. It has the benefit of being ubiq-
uitous and well understood among Unix users. The
control flow constructs available in the Bourne shell are
fairly standard, including while, if, for, and case.
Since these are the real workhorses of shell scripting, we
attempted to keep their semantics as close as possible to
the Bourne shell. However, enhancements were required
in order to support startup of parallel processes. In this
section, we discuss these enhancements, as well as the
language employed by MPISH2 and the use of the result-
ing tool.

3.1 Enabling Parallelism

Parallel process managers work in much the same way as
serial process managers. They are responsible for post-
fork/pre-exec process setup and the setup of standard I/O.
The main difference between serial and parallel process
managers is the need for parallel library bootstrapping.
This bootstrapping consists of two main parts: the descrip-
tion of the parallel process topology and the communica-
tion setup.

Many process managers describe initial process topol-
ogy at the time of parallel process startup. Typically, the
topology specification consists of process count and
some set of resources, usually a list of nodes on which the
processes should be executed. This corresponds closely
to the common arguments to mpirun. Alternatively, one

 at ARGONNE NATIONAL LAB LIB on May 20, 2010 http://hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com


168 COMPUTING APPLICATIONS

can use mpiexec, specified by the MPI standard (MPI
Forum 1994), for supplying the same data. Whatever the
input format, this information is used for the same purpose:
the description of initial communicator, MPI_COMM_
WORLD, for the new process. Each communicator has a
specific size, and each component process has a specified
rank in that communicator. This initial topology descrip-
tion is what differentiates one 32-node program from
thirty-two 1-node programs.

To support MPI program execution, we introduce the
notion of a parallel execution context. A parallel execu-
tion context describes the resulting MPI_COMM_WORLD
communicator for all MPI programs executed. When
MPISH2 is started, the initial parallel program execution
context is global; it corresponds to MPI_COMM_WORLD
for the MPISH2 processes, since they are also an MPI
process. As the MPISH2 process executes the input script,
the parallel execution context can be split into non over-
lapping pieces by MPISH2 control flow constructs. This
process is discussed in detail in Section 3.2.

The second important aspect of parallel process startup
is communication bootstrapping. For disparate processes
to begin acting as a single parallel entity, communication
must be established. This is accomplished in different
ways with different parallel libraries. MPICH2 uses an
interface called PMI, or Process Manager Interface, to
provide this information to client programs. PMI takes
the form of a distributed database, providing standard
put, get, and fence operations. The client program is pro-
vided with connection information for its PMI instance
and can use that data to connect to other processes.
Because this mechanism is not mandated by the MPI
specification, this technique is implementation-specific.
Hence, it works only with MPICH2 programs.

3.2 The MPISH2 Input Language

When considering how to integrate MPI programs into a
Unix environment, we gave highest priority to retaining
standard Unix shell semantics. The intention was to
allow currently existing scripts to use MPISH2 without
modification. As parallel versions of Unix utilities are
written, these scripts can transparently begin using them,
greatly improving the scalability of existing tasks and
processes. Several of these parallel tools are described in
Section 4.2.

The compatibility requirement motivated the use of a
Bourne shell syntax. All of the semantics regarding serial
command execution remain the same as their serial shell
counterparts. The Unix parent/child process relationship
provides the same capabilities and remains fundamen-
tally a serial construct. Command pipelines, backticks,
and exit statuses also remain the same as those in the
serial Bourne shell. However, the semantics of the con-

trol-flow constructs needed augmentation to support par-
allel execution contexts.

As described in the previous section, MPISH2 supports
parallel execution of MPI programs by using a parallel
execution context. This context describes the topology of
MPI_COMM_WORLD for any MPI processes executed by
MPISH2. The current state of the parallel execution con-
text at any given point is maintained by MPISH2. For
example, if the first line of a script runs a program, its par-
allel execution context will be global, and processes will
run in a single large context across all locations where
MPISH2 processes are running. As the script executes and
control flow statements are processed, the parallel execu-
tion context is split into smaller pieces and then rejoined
when those scopes disappear. This behavior is analogous
to the use of MPI_Comm_split in MPI programs.

• if performs a two-way split, corresponding to the truth
value of the predicate. MPISH2 ranks will be grouped
with others in the same side of the branch into two paral-
lel execution contexts corresponding to true and false.
For example, when if is executed in an 8-process con-
text with a predicate that evaluates to true on 2 nodes
and false on the other 6 nodes, ranks evaluating to true
are grouped into a parallel execution context of size 2.
Similarly, the remaining nodes are grouped into a sec-
ond parallel execution context of size 6. These contexts
persist until the if statement is finished executing.

• case performs an N-way split, operating similarly to if.
• while creates an execution context corresponding to all

ranks for which the condition evaluates as true. All pro-
grams run in each iteration are grouped according to
this initial evaluation. The condition is evaluated at the
start of each iteration on each rank, continuing until all
ranks evaluate false.

• for has no effect on parallel execution context because
it is not conditional. No automatic parallelizing is per-
formed.

Each of these control flow statements results in a set of
new parallel execution contexts for the duration of the
control flow statement. The formulation of these seman-
tics requires the use of an implicit barrier at the conclu-
sion of control flow execution. This approach has the
benefit of retaining the character of the serial Bourne
shell. All other Bourne shell semantics remain identical
to their serial analogues; in fact, for the degenerate case,
MPISH2 behavior is identical to a serial Bourne shell.

3.3 MPISH2: A Parallel Shell

The most important difference between a normal shell and
MPISH2 is that MPISH2 is a parallel program, consist-
ing of multiple communicating Unix programs. A script,

 at ARGONNE NATIONAL LAB LIB on May 20, 2010 http://hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com


169A COMPOSITION ENVIRONMENT

given to MPISH2, is executed by each of the MPISH2
processes concurrently. The MPISH2 processes commu-
nicate with each other (in a scalable fashion) using MPI.
That is, MPISH2 is itself an MPI program. Therefore,
MPISH2 must be started by the startup mechanism of the
proper MPI implementation. We assume in this paper that
mpiexec invokes this mechanism. Thus, a 100-process
instance of MPISH2 is started by a command line some-
thing like the following:

$ mpiexec -n 100 mpish2

In a cluster environment, the specification of which
nodes MPISH2 is run on depends on the particular MPI
implementation being used. We have used MPICH2 (http:/
/www.mcs.anl.gov/mpi/mpich2), but MPISH2—being an
MPI program—can be run by using any MPI implemen-
tation. Note, however, that because of the nonstandard
nature of MPI startup, programs started by MPISH2 must
use MPICH2.

As described in the previous section, MPISH2 scripts
are Bourne-shell scripts that are presented to the standard
input of each MPISH2 process. MPISH2 must be parallel
in order to properly provide all information about child
processes. For example, using a traditional MPI process
manager to run two parallel programs in a pipeline would
look like the following:

$ mpiexec -np 10 prog1 | mpiexec -np 10 prog2

This command runs prog1 and sends the standard out-
put of the first mpiexec to the second invocation of
mpiexec. Handling of standard output is not specified
by the MPI standard; however, many MPI process manag-
ers provide multiplexed standard output from all proc-
esses to the standard output of mpiexec. Likewise,
mpiexec typically, though not universally, sends stand-
ard input of mpiexec to some number of the parallel
process instances. This approach is suboptimal for script-
ing, as the results are dependent on the implementation of
the MPI process manager. Moreover, the construction of
pipelines is fundamentally nonscalable and inefficient in
this approach, since all stdio data is collected by the proc-
ess management system and then redistributed for each
subsequent stage in the command pipeline.

Under MPISH2, a similar command is used, together
with a process management system for MPISH2 startup.

$ mpiexec -np 10 mpish2

Once MPISH2 is running, a command pipeline can be
executed by using the following script.

$ prog1 | prog2

This script is run by every MPISH2 instance, resulting in
10 instances of both prog1 and prog2, connected
rankwise into a pipeline. That is, standard output pro-
duced by the rank 0 instance of prog1 is fed into the
standard input of the rank 0 instance of prog2, and so
forth. Additional utilities are provided, allowing interrank
manipulation of I/O streams. These execution semantics
provide more flexibility and scalability than those afforded
by traditional parallel shells and MPI process manage-
ment systems.

4 Implementation

In this section, we discuss our implementation of
MPISH2, and present several utilities we have written to
provide a full user environment.

4.1 Shell Modifications

The implementation of MPISH2 is based on a modified
version of the Minix (Tannenbaum 1987) shell, included
with Busybox (http://www.busybox.net). Three main
modifications have been made to this shell, corresponding
to the issues described in the previous section.

First, MPISH2 needs to be able to provide a discrete
PMI instance for each (potentially) parallel child pro-
gram executed. PMI is a distributed database, including
put, get, and fence operations. A new PMI instance is ini-
tialized whenever a new process is forked. Each is initial-
ized with an MPI communicator that describes the current
execution context. During client execution, each client
program can connect to this PMI instance via a socket
and issue commands.

Many of the commands, like put, which stores a value
in a distributed database, will be serviced locally; however,
some, such as get or fence, may require communication
with other parts of the same PMI instance. All communi-
cation operations are implemented by using MPI collective
and asynchronous operations. Fence is implemented by
using MPI_Barrier. The implementation of get is more
complicated. When a PMI instance receives a get request,
it checks whether the value is already stored locally. If
it is, the request is immediately serviced. If not, a mes-
sage is sent to the PMI instance with the next higher rank
modulo communicator size. Each process also receives
queries for unknown values asynchronously. If the local
process has the value, it responds to the querier; other-
wise, it forwards the request to the next rank in the PMI
instance.

Each PMI instance in the same MPISH2 process uses
a discrete communicator that has been MPI_Comm_
dup’ed at initialization time. This allows largely simul-
taneous execution of multiple parallel client programs;
the only blocking operation used in the MPI implementa-

 at ARGONNE NATIONAL LAB LIB on May 20, 2010 http://hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com


170 COMPUTING APPLICATIONS

tion of PMI is the barrier used in the PMI fence opera-
tion.

The second major modification is driven by the fact
that MPISH2 is designed to run parallel programs—that
is, a set of processes grouped into a single cohesive entity.
To support this, we added a stack of parallel program exe-
cution contexts to MPISH2. When MPISH2 begins exe-
cution, its initial execution context corresponds to its
MPI_COMM_WORLD. However, as the script executes, the
parallel execution context is split and joined based on
conditional logic. Nested control flow statements result in
a deeper stack of execution contexts, each with a corre-
sponding MPI communicator.

The third, and perhaps most complex, modification was
to the control flow construct to manipulate the current
parallel execution context. In a typical serial shell, control
flow constructs use only return codes and have no side
effects. In MPISH2, however, control flow constructs
also affect the parallel execution context by calling MPI_
Comm_Split after predicate execution. For example, in
serial shells, the shell executes the if predicate and either
the true or false branch depending on a zero or nonzero
return code, respectively. MPISH2 executes the same
operations but with the addition of a call to MPI_Comm_
Split using zero/nonzero exit status. Other control flow
constructs were similarly modified.

The main complexity of implementing these control
flow changes centered on while. Extending while to sup-
port parallel execution contexts required the addition of a
parallel notion of while loop status. Normally, once the
while predicate evaluates to false, the loop is complete.
In an MPISH2 while loop, each rank needs to continue
executing the loop predicate until all ranks evaluate to
false.

None of these modifications proved complicated, and
the overall semantics of the MPISH2 remains close to the
semantics of the Bourne shell. At the same time, these
modifications provide a wealth of new capabilities to
Unix users.

4.2 Parallel Utilities

A parallel execution environment is not really complete
without a set of parallel programs useful for writing basic
programs. These programs are analogous to test or wc
for serial shells. We have implemented a variety of small
utilities, suffixed with the .mpi extension, to address
this issue. The first set is a series of parallel predicates,
suitable for use in control flow constructs. The following
is a list of basic parallel predicates, with a short descrip-
tion of each.

• rank.mpi displays the process’s rank in the current
execution context.

• size.mpi displays the size of the current execution
context.

• once.mpi exits with a return code of 0 once per
physical node present.

• zoom.mpi provides access to scalable numeric reduc-
tions for the provided argument. The predicate use of
this utility returns 0 when the argument falls within
one standard deviation of the mean of all values.

Another group of utilities is used to move data between
ranks in parallel pipeline operations.

• pflatten.mpi sends all stdout streams to process 0.
• ptee.mpi forwards stdin from process 0 to all proc-

esses. It functions like a parallel version of tee.
• pcoalesce.mpi coalesces stdout from all nodes,

producing hostname delimited lines on processor 0.
• bcast.mpi broadcasts the data from one process,

specified as an argument, to all other processes. This
data is reproduced on stdout.

The final group of utilities comprises parallel analogues
to serial utilities. These utilities provide the most promise
for new types of functionality, as these MPI utilities pro-
vide the ability to use client systems as a broadcast tree
and collective analysis of data.

• stagein.mpi downloads a file from an http server
and broadcasts to all nodes, eventually writing it to
disk on each.

• stageout.mpi uploads files, tagged with rank, to
the fileserver from all clients.

• rsync.mpi synchronizes files from process 0 to all
other processes. This program can handle all regular
and special files.

• time.mpi times the execution of a parallel program,
producing a single walltime result.

Each of these programs is a simple MPI program. Noth-
ing special is required to write a utility, so users can eas-
ily write custom, scalable MPISH2 utilities.

5 Usage Examples

MPISH2 is useful across the same broad range of problems
as are standard shell scripts, with the added ability to run
concurrent, parallel programs. It can easily be used for tasks
ranging from the most trivial to those that can strongly
benefit from access to parallelism and scalable tools. In this
section, we illustrate the most interesting language fea-
tures and use cases for MPISH2. We begin by providing
simple cases that show use of these features in isolation,
and then build up to several more complex examples that
demonstrate the flexibility and elegance of this approach.

 at ARGONNE NATIONAL LAB LIB on May 20, 2010 http://hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com


171A COMPOSITION ENVIRONMENT

5.1 Language Features

This first example demonstrates how conditional expres-
sions interact with the parallel execution context.

5.1.1 Parallel execution context manipulation The
following script splits the current execution context into
two: one consisting of up to the first four ranks, and
another consisting of the remainder. Both branches run a
hello world program demonstrating the size and details
of each parallel process.

Note that each of these branches can be further subdi-
vided by running a second conditional inside.

5.1.2 Workload distribution among clients The sec-
ond example begins a command pipeline that performs a
file listing on rank 0, broadcasts this listing to all clients,
performs a local ls -l on each client, performs a local filter
to exclude nonzero-length files, and coalesces the results
to rank 0.

Performing these same operations with traditional parallel
shells would be dramatically less scalable, as all output
processing would be performed on the head node. Hence,
the complete results of all commands would need to be
transmitted to the head node. Also, all processing of this
output would be performed serially on this single node.
This example demonstrates the ability to run different
programs across ranks during the course of a single com-
mand pipeline.

5.1.3 Scalable utility replacement The final case
demonstrates the use of a scalable replacement for a
standard Unix program, rsync. A simple invocation of
rsync can cause substantial problems on a scalable
resource with a limited fileserver infrastructure. Each cli-
ent will individually download data from the server in a
point-to-point fashion.

When run under MPISH2, this script is able to call a scal-
able replacement for rsync that performs an internal
broadcast of file metadata and contents. This has the use-
ful behavior of providing a constant load on the file serv-
ice infrastructure, regardless of client scale; all per-client
scaling is performed on the clients. This technique was
demonstrated in an earlier paper (Desai et al. 2004) but
has been made much more accessible by MPISH2.

5.2 Complex Examples

The following are more complicated examples of MPISH2
being used in common cluster tasks.

5.2.1 Job script This example is a job script for a
queueing system. This script runs the prologue, epilogue,
and file staging commands once per physical node (host-
name). Of these commands, the prologue and epilogue
are serial, while the file staging commands are parallel.
Once setup has completed, the user job is run (under the
user’s UID), and cleanup is performed. Not only can
serial and parallel programs be interchanged, but stand-
ard shell scripting mechanisms (like the use of su) can
also be used with parallel programs.

 at ARGONNE NATIONAL LAB LIB on May 20, 2010 http://hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com


172 COMPUTING APPLICATIONS

Several active execution contexts are used in this pro-
gram. Two instances of a context containing each physi-
cal node are created by the script. The first is used for job
setup (e.g. prologue and file staging), and the second is
used for job cleanup. The user’s job script is executed in
the global execution context.

5.2.2 Benchmarking scripts This example provides
a basic illustration of concurrency. Benchmarking scripts
are often implemented as a for loop that sequentially exe-
cutes program runs with different sizes, for example, a
script such as the following.

Such a script does a reasonable job of running bench-
marks; however, numerous processor resources are
wasted in the first few iterations of the loop if the full
number of nodes is reserved for the full duration of the
execution.

This process can be run far more efficiently if test cases
are executed concurrently. First, the application is run on
all nodes. Second, the nodes are grouped into partitions,
each with a different power of two size, up to half the total
number of nodes. Each of these partitions runs a different
size test case concurrently. The following example is a
concurrent benchmarking script. It is assumed that the
script is run on the largest size being benchmarked, in this
case 32 nodes.

6 Conclusions and Further Work

We have presented MPISH2, a parallel process manager
for MPI programs that provides an interface almost indis-
tinguishable from the standard Unix Bourne shell. It ena-
bles the use of MPI in Unix environments in a seamless
manner not previously possible. The addition of scalable
utilities and simple, Bourne shell-style control to Unix
environments enables a variety of system and user tasks to
be implemented in a scalable and elegant fashion. More-
over, users can now distribute macroscopic tasks scalably
across pools of clients and explicitly control how com-
munication occurs in command pipelines.
MPISH2 creates a venue in which scalable Unix utili-

ties can be used. The range of current utilities available is
clearly insufficient for all of the possible use cases.
Hence, much of the future work will consist of identify-
ing tasks that would be better performed in parallel. Also,
one current limitation of MPISH2 is that job control has
not been parallelized; it is unclear whether such paralleli-
zation is needed, but the issue should be investigated.

Acknowledgments

This work was supported by the Mathematical, Informa-
tion, and Computational Sciences Division subprogram
of the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy, under Con-
tract DE-AC02-06CH11357.

Author Biographies

Narayan Desai received his B.A. in computer science
from the University of Chicago. He is a system adminis-
trator and system software developer in the Mathematics
and Computer Science Division of Argonne National
Laboratory. His work mainly falls at the intersection of
system software and system management.

 at ARGONNE NATIONAL LAB LIB on May 20, 2010 http://hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com


173A COMPOSITION ENVIRONMENT

Ewing “Rusty” Lusk received his B.A. in mathematics
from Notre Dame in 1965 and Ph.D. from the University
of Maryland in 1970. He was an assistant professor of
mathematics, and associate and full professor of computer
science, at Northern Illinois University before joining
Argonne National Laboratory in 1982. He is an Argonne
Distinguished Fellow and director of the Mathematics and
Computer Science Division at Argonne. His work has been
in automated reasoning and parallel computing, including
the development of the MPI message-passing standard, on
which he has written and lectured widely. He is also the
co-developer of the MPICH implementation of MPI. He
currently works on programming models and tools for par-
allel computing. He is the author of more than 100
research articles in mathematics, automated deduction,
and parallel computing, together with a number of books.

Rick Bradshaw is a system administrator in the Mathe-
matics and Computer Science Division of Argonne National
Laboratory. He helps to maintain HPC resources, experi-
mental computing resources, and general UNIX infra-
structure. He can be reached at bradshaw@mcs.anl.gov.

References
Bourne, S. R. (1978). An introduction to the Unix shell, Bell

System Technical Journal, 57(2): 2797–2822.
Brightwell, R. and Fisk, L. A. (2001). Scalable parallel applica-

tion launch on Cplant, in Proceedings of Super Computing
2001.

Butler, R., Desai, N., Lusk, A., and Lusk, E. (2003). The proc-
ess management component of a scalable system software
environment, in Proceedings of the 5th IEEE Interna-
tional Conference on Cluster Computing (CLUSTER03),
pp. 190–198, IEEE Computer Society.

Butler, R., Gropp, W., and Lusk, E. (2000). A scalable process-
management environment for parallel programs, in J.
Dongarra, P. Kacsuk, and N. Podhorszki, editors, Recent
advances in parallel virutal machine and message passing
interface, Lecture Notes in Computer Science, vol. 1908,
pp. 168–175, Springer.

Desai, N., Bradshaw, R., Lusk, A., and Lusk, E. (2004). MPI
cluster system software, in D. Kranzlmuller, P. Kacsuk,
and J. Dongarra, editors, Recent advances in parallel viru-
tal machine and message passing interface, Lecture Notes
in Computer Science, vol. 3241, pp. 277–286, Springer.

Desai, N., Lusk, A., Bradshaw, R., and Lusk, E. (2005).
MPISH: A parallel shell for MPI programs, in Proceed-
ings of the 1st Workshop on System Management Tools for
Large-Scale Parallel Systems (IPDPS ’05), Denver, Colo-
rado.

Flannery, R., Geist,A., Luethke, B., and Scott, S. L. (2000).
Cluster command & control (C3) tools suite, in Proceed-
ings of the 3rd Distributed and Parallel Systems Confer-
ence, Kluwer Academic Publishers, Norwell, MA.

Korn, D. G., Northrup, C. J., and Korn, J. (1996). The new
Korn shell, The Linux Journal, 27, July.

MPI Forum. (1994). Message Passing Interface Forum: Docu-
ment for a standard message-passing interface, Technical
Report CS-93-214 (revised), University of Tennessee.
Available on netlib.

Ong, E., Lusk, E., and Gropp, W. (2001). Scalable Unix com-
mands for parallel processors: A high-performance imple-
mentation, in Y. Cotronis and J. Dongarra, editors, Recent
advances in parallel virtual machine and message passing
interface, Lecture Notes in Computer Science, vol. 2131,
pp. 410–418, Springer.

Tannenbaum, A. (1987). Operating systems, design and imple-
mentation, Prentice Hall, Old Tappan, NJ.

Thompson, K. (1975). The Unix command language, in Struc-
tured Programming, pp. 375–384, Infotech Information
Ltd.

 at ARGONNE NATIONAL LAB LIB on May 20, 2010 http://hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com

